New Research Shows How to Minimize Side Effects of Chemo

Tuesday, August 4, 2015 - 08:00
  • Martha Burns, Ph.D

Key Points:Fast ForWord and chemotherapy

  • Regardless of age, cancer treatments impair learning, memory and attention
  • The speed of processing information can also be diminished
  • These effects can last for months, or even years, after cancer treatment is finished
  • Research study shows Fast ForWord can help prevent learning problems in cancer survivors when used during cancer treatment

The cognitive impact of chemotherapy on children

When any of us are told someone we love has a diagnosis of cancer, “The Emperor of all Maladies” so aptly named by Siddhartha Mukherjee, it is very upsetting. But, when it is a parent who learns of a cancer diagnosis in their child, time seems to stand still for months, often years, as treatments are administered.  The good news is that the overall mortality rate from cancer has decreased markedly in the last 20 years. For children diagnosed with cancer, today’s cure rate exceeds 80% for some types of cancer. Earlier diagnosis and more specifically targeted forms of chemotherapy, combined with evidence-based protocols, mean many children are now miraculous survivors of this age-old, but very complex, illness.

After cancer – what are the implications on learning?

However, the success of targeted chemo and radiation therapy does come with a price. With improved survival rates, oncologists have become more aware of the aftereffects that childhood cancer treatments have on thinking, learning and remembering.  According to Jorg Dietrich at Massachusetts General Hospital and his colleagues at Stanford University and Anderson Cancer Center, conventional cancer therapies like chemotherapy and radiology for brain tumors in patients of any age frequently result in a variety of thinking and memory of problems. These neurocognitive deficits, as they are called, include impaired learning, memory, attention, and negatively impact the speed of information processing.

Increased survival rates = increased studies on effects

Interested specifically in those effects on children treated for cancer, Raymond Mulhern and Shawna Palmer at St. Jude’s Research Hospital have reported that the neurocognitive effects of cancer treatment on children can linger for months, or even years, after cancer treatment has been successfully completed. This new understanding of the long term effects of successful cancer treatment has resulted in an increase in the study and understanding of cancer treatment-related learning problems.  Fortunately, it has also led to an increase in research on effective methods for treating the cognitive aftereffects of successful cancer treatment.

According to Mulhern and Palmer, the two most frequent types of childhood cancers that are associated with neurocognitive disorders after successful treatment are acute lymphoblastic leukemia and brain tumors.  The authors state that although neurocognitive effects of cancer therapy are quite variable – depending on the actual diagnosis and age, length and dosage of therapy – researchers generally agree that a high percentage of children will experience problems with learning and thinking, which can interfere with academic achievement after successful cancer treatment.  Oncologists have been working to change their treatment approach when possible to reduce the cognitive aftereffects, but their primary goal is first to maintain the high cure rate.

Research study: can we counteract these cognitive aftereffects?

Very recently, an exciting new controlled study was published indicating that the neuroscience-based intervention, Fast ForWord, provides significant improvements in learning to read after chemotherapy and radiation therapy for a kind of brain tumor called meduloblastoma. Ping Zou at St. Jude Research Hospital and his colleagues investigated whether Fast ForWord could prevent learning problems in cancer survivors when used during cancer treatment.

They studied two groups of school-aged children who either used Fast ForWord during their cancer treatment or a standard-of-care without the Fast ForWord intervention. Then, about 2 and one-half to three years after successful completion of chemo and radiation therapy for this type of brain tumor, the survivors received functional measures of brain function as well as a series of educational tests. A control group of 21 typically developing children with no history of cancer were included for comparison. The education tests included assessment of phonological skills (known to be a critical component of reading skill) and a variety of reading measures.  Their brain function was evaluated by using functional brain imaging (fMRI).

The results

During the time of the brain imaging, the researchers found that the tests of phonological skills were significantly higher among the cancer survivors who had received the Fast ForWord reading intervention during their cancer treatment, than among those who received standard-of-care. Even more important, the measures of functional brain activation across those brain areas recognized as important for reading showed a trend towards normalization among the children who received the Fast ForWord intervention.  This led the authors to conclude that the results of the study provide evidence for the long-term value of this type of reading intervention in children after surviving a serious form of brain cancer.

A diagnosis of cancer in a child is frightening and overwhelming, but fortunately the cure rate of many childhood cancers is now very high. With the high cure rates, doctors now recognize that these very effective cancer therapies may have long term aftereffects on learning and thinking. However, the best news is that there are interventions, such as the Fast ForWord programs, specifically designed by neuroscientists to normalize brain functions for learning that can prevent and/or remediate some of these learning problems.  

References:

Dietrich, J.Monje, M., Wefel, J. and Meyers, C. Clinical Patterns and Biological Correlates of Cognitive Dysfunction Associated with Cancer Therapy. The Oncologist. 2008;13:1285–1295

Mukherjee, S. The Emperor of All Maladies: A Biography of Cancer. Scribner; 2010

Mulhern, R. and Palmer, S. Neurocognitive late effects in pediatric cancer. Current Problems in Cancer. July–August 2003, Pages 177–197

Zou, P et al. (2015) Functional MRI in medulloblastoma survivors supports prophylactic reading intervention during tumor treatment. Brain Imaging and Behavior, 2015. Available at: http://link.springer.com/article/10.1007/s11682-015-9390-8. Accessed July 27, 2015.

 

Parent Checklist: Is My Child At-Risk for Learning Issues?

Tuesday, June 2, 2015 - 08:00
  • Kristina Collins


parent checklistWe developed the following parent checklist to learn what concerns parents see in their children and to help them decide if their child is in need of help. Choose one answer for each question and indicate how often the behavior is exhibited in your child’s daily life with the following options: Never, Rarely, Sometimes, Often, or Always.

  • Misunderstands what you say
  • Needs instructions repeated
  • Misunderstands jokes
  • Has difficulty understanding long sentences
  • Needs questions repeated
  • Has difficulty retelling a story in the right order
  • Cannot finish long sentences
  • Has trouble saying the same thing in a different way (rephrasing)
  • Has trouble finding the right word
  • Pronounces common words incorrectly
  • Gets confused in noisy places
  • Has difficulty engaging in conversation with others
  • Has behavior problems
  • Lacks self-confidence
  • Avoids group activities
  • Has trouble paying attention
  • Has trouble sounding out words
  • Has trouble reading
  • Has trouble spelling
  • Cannot tell you about the events of his/her school day

If you answered Sometimes, Often or Always to several of these, your child may be at-risk for a language-based learning disability and will likely require intervention to prevent these issues from affecting him/her academically in the future.   Why are we posting this now? Because summer is one of the best times to tackle these issues.

We hear from countless parents like you who are looking for help for their bright child who struggles with reading, writing, attention, or other issues. You’re in the right place. We can help you help your child this summer.  

Related Reading:

Preventing Summer Brain Drain with Dr. Martha S. Burns

What’s on Your Kids’ Summer Reading List?

 

Alternatives to Medication in the Treatment of ADD

Tuesday, March 24, 2015 - 08:00
  • Martha Burns, Ph.D


In this op-ed in the New York Times, Richard A. Friedman, Professor of Clinical Psychiatry and Director of the Psychopharmacology Clinic at the Weill Cornell Medical College, discusses the urgent need to address the needs of students with attention problems.  Given the dramatic recent increase in the prevalence of ADHD diagnoses in school-aged children [according to the Centers for Disease Control, the lifetime prevalence in children has increased to 11 percent in 2011 from 7.8 percent in 2003 — a whopping 41 percent increase], Dr. Friedman argues for a need to find more natural (non-medical) ways to help these students. In his op-ed he states, “In school, these curious, experience-seeking kids would most likely do better in small classes that emphasize hands-on-learning, self-paced technology-based assignments, and tasks that build specific skills.”

Whereas many parents and educators consider medication as a first approach to management of disorders of attention, the recent dramatic increase in the incidence and the call for consideration of non-medical interventions for school-aged children is important for parents and teachers to consider when managing learning issues within the classroom. One important type of attention disorder that has been treated successfully without medication is auditory attention disorders associated with some types of learning disabilities. Research conducted by Courtney Stevens and her colleagues at the Brain Development Lab at the University of Oregon has shown that children with specific language learning disorders have problems with auditory attention. Parents and educators rarely use the term “auditory attention”; however, the Stevens et al. research is increasingly supportive of its important role in learning.

We all recognize students who have problems with auditory attention: those who cannot stay focused on listening long enough to complete a task or requirement (such as listening to a class discussion in school). In fact, when educators use the term “listening skills,” they are referring to auditory attention.  It is virtually impossible to imagine a classroom where paying attention to the teacher for sustained periods of time is not critical to academic success.  According to the International Listening Association (www.listen.org), 45 percent of a student’s day is spent listening, and students are expected to acquire 85 percent of their knowledge through listening. Auditory attention skills mature over time, and like many other skills important for learning (memory, thinking skills), students vary in their ability. Children with ADHD have a known diagnosis of significant auditory (and visual) attention problems. However, according to the Stevens et al. research, even across typical learners there is a variation of ability ranging from those with average auditory attention skills to those with excellent auditory attention skills. And like with other cognitive skills, independent controlled research indicates that Fast ForWord training can significantly improve auditory attention and/or reading skills in a variety of students:  typical students and those with specific language impairment.

For those interested in the specifics of the Stevens et al. study, she and her colleagues examined whether six weeks of Fast ForWord Language training would influence neural mechanisms of selective auditory attention previously shown to be deficient in children with specific language impairment (SLI). Twenty 6-8 year old students received Fast ForWord Language training, including 8 students diagnosed with SLI and 12 students with typically developing language skills. An additional 13 students with typically developing language received no specialized training but were tested and retested after a comparable time period as a control group.  Before and after training, students received a standardized language assessment as well as a highly objective electrophysiological neural measure of attention using Event-Related Potentials (ERP).

Compared to the control group, students receiving Fast ForWord Language training showed increases in standardized measures of receptive language as well as an improved effect of attention on neural processing. No significant change was noted in the control group. The enhanced effect of attention on neural processing represented a large effect size (Cohen’s d = 0.8, indicating that the average child in the experimental group is comparable to the child at the 79th percentile of the comparison group). These findings indicate that the neural mechanisms of selective auditory attention, previously shown to be deficient in children with SLI, can be remediated through training and can accompany improvements on standardized measurements of language development.

Other controlled research, presented by Deutsch et al. at a CHADD conference several years ago, also showed improvement in attention among those students with a diagnosis of ADHD or ADD plus language impairment. In fact, if one considers Dr. Friedman’s finding that children with attention disorders benefit from “self-paced technology-based assignments and tasks that build specific skills,” there are no better designed self-paced e-learning programs than the Fast ForWord and Reading Assistant solutions. The Fast ForWord Reading products and Reading Assistant tasks are self-paced online tasks that require sustained auditory attention.  The tasks in Reading Assistant especially require activities that include listening to modeled reading, reading aloud while receiving corrective feedback through listening, listening to your own reading, and then answering questions about what was read.  Answering “think about it” comprehension questions further exercises both auditory memory and executive function skills.

In conclusion, the effort to find more natural, non-medical ways to help students with attentional disorders is at hand.  Self-paced technology programs like the neuroscience-based Fast ForWord series provide one proven alternative for improving attentional skills in students with language-based learning issues as well as those diagnosed with ADD and ADHD. 

Further Reading:

Stevens, C., Fanning, J., Coch, D., Sanders, L., & H Neville (2008). Neural mechanisms of selective auditory attention are enhanced by computerized training: Electrophysiological evidence from language-impaired and typically developing children. Brain Research, 1205, 55-69.

Students Show Improved Auditory Attention and Early Reading Skills After Fast ForWord Intervention

Related Reading:

Improved Auditory Processing With Targeted Intervention

Why Auditory Processing Disorders (APD) are Hard to Spot

 

10 Questions to Ask Your Child’s Teacher This Year (Don’t Forget Cognitive Skills!)

Tuesday, September 2, 2014 - 17:15
  • Norene Wiesen

It’s back to school…again! Your child is getting to know a new teacher and facing a host of new expectations. How can you be sure that you are prepared to help your child navigate the school year and get the most out of every day at school? It helps if you know what questions to ask. Here’s a list you can use as a starting point for talking with your child’s teacher.

Parent Night Questions

Many teachers provide a Parent Night handout or a website with detailed information about classroom expectations or procedures. See what your child’s teacher has prepared for you, and if it doesn’t answer the following questions, be sure to ask them yourself.

  1. Student Feedback & Support - How do you like to provide feedback to students? Are there any interventions to help children who need a little extra attention? When are you available if my child needs extra help?
  2. Home Support - How can I support you, as a parent, so that my child gets the most out of this school year?

Conference (or “As-Needed”) Questions

  1. Reading – When working in a small group with my student in reading, what is an area of strength or weakness that you notice? How is my child’s decoding? Fluency? Comprehension? Vocabulary?
  2. Writing – What are my child’s specific strengths and weaknesses in writing?
  3. Math - What are my child’s specific strengths and weaknesses in math?
  4. Cognitive Skills – How would you say my child is doing, as compared to peers, in these areas:
    1. Memory: How well does my child learn and remember new information? Does he or she require more or less support than peers? How easily is information retained?
    2. Attention: How is my child’s attention during different types of activities? One-on-one? Small group? Whole class?
    3. Processing: How well is my child able to “make connections” as compared to peers? In reading: decoding new words, making educated guesses about the meaning of a new word, using background knowledge, or predicting and inferring. In math: during computation (is it labored or slow?) or retrieval of simple number facts. In writing: able to generate coherent ideas without a lot of support and begin to put them into words (orally or on paper, depending on grade).
    4. Sequencing: How well is my child able to organize his thoughts for writing or explain his understanding of a new concept?
  5. Expression of Thoughts & Language Skills – How often do students have an opportunity to share their thoughts with the class (i.e., “think out loud”)? What do you notice when my child participates (or not)?
  6. Motivation – What does my child find motivating? What can I do to support this?
  7. Social Skills – How does my child do without direct supervision? How does my child handle conflict with other students? What one thing could my child do to improve his or her social skills?
  8. State Testing & Advancement – Do you have any concerns about my child’s ability to prepare for and take the state tests? Or his or her advancement to the next grade?

If you have concerns about your child’s cognitive skills or academic performance, don’t wait until conference day to let the teacher know. Use the teacher’s preferred method of communication to request a special meeting. For any area where extra help might be needed, or even if your child has reached proficiency, be sure to ask, “What can I do to support my child at home?” And then really do it. That school-home connection can make a huge difference in student achievement. Here’s to a great school year!

Related reading:

The Parent Trap: Getting Your Struggling Learner to Do Homework Independently

Instilling a Love of Reading: What Every Teacher and Parent Should Know

 

The iPad® and Student Engagement: Is There a Connection?

Tuesday, April 1, 2014 (All day)
  • Carrie Gajowski

iPads and student engagement

When students at ACS Cobham International School (UK) got iPads, Richard Harrold saw an opportunity. As an assistant principal at the lower (elementary) school, he had been hearing glowing reports from other educators about students seeing remarkable gains when using iPads. Were the gains real? And was the effect due to something special about the iPad, or were students just responding to the newness of the technology?

Harrold decided to find out. With the help of his school’s “Project i” team, he launched a formal study with 1 stand 2 ndgraders to see if they would experience the same increases in engagement and understanding that he had been hearing about from other educators.

Harrold's study confirmed the benefits of iPads in schools:

  • iPads benefit learners of different ages, sometimes in different ways
  • iPads have special benefits for learners in the very early grades
  • The iPad makes typing easier for 1 stand 2 ndgraders

More generally, results indicated that:

  • iPads improve student engagement
  • “iPad buddies” collaborate more
  • iPads boost perseverance

The effects discovered were more than a reaction to a fun, new “toy.” In fact, to ensure that their results were not due to a honeymoon period, the team delayed the study until learners had been using their iPads for a full eight months.

These findings are exciting, especially for learners requiring intervention. Struggling students can be harder to engage and may have trouble enduring learning challenges. Giving them the opportunity to use an iPad-based intervention can motivate learners to persevere and achieve.

In a time where “grit” is getting a lot of attention as a key indicator of future success, anytime that perseverance goes up – as with iPad use – educators would be wise to take notice. But don’t rule out the appeal of classic technologies. Early-grade learners would still rather read a bound book than an ebook on iPad.

References:

Harrold, R. (2012). Measuring the Effect of iPads in the Classroom. The International Educator.Retrieved from: http://connection.ebscohost.com/c/articles/74482139/measuring-effect-ipads-classroom

Harrold, R. (2012). The iPad Effect: Leveraging Engagement, Collaboration, and Perseverance. The International Educator. Retrieved from: http://www.tieonline.com/view_article.cfm?ArticleID=100

Related reading:

10 Big Benefits of Using iPads in Schools

Inspiring Students to Dream, Learn and Grow

 

How to Tell When Neuroscience-Based Programs are Well-Developed

Tuesday, March 25, 2014 (All day)
  • Martha Burns, Ph.D

 5 key elements to look for in brain exercisesNeuroscience-based programs

I am sure you have noticed that there are many technology programs out there that claim to “build,” or improve your brain function. Every week I receive emails from companies advertising brain  games that promise to train attention and memory skills. You may have wondered, do “brain games” really work? A recent article in The New York Times entitled "Do Brain Workouts Work? Science Isn't Sure," actually asked that very question as well.

How would a memory brain game that I purchase from a website be different from a card or board game like “Concentration”? How is an attention game different or better than the concentration required to read a good book or play a card game that requires focused and sustained attention to cards played or discarded each round? Do good old fashioned paper pencil activities like crossword puzzles help with brain function? How about Bridge or Chess? Does watching Jeopardy on Television help your memory? Wouldn’t any challenging video game help us with attention if we had to stay focused for long periods of time to get to a new level?

The answers to the above questions are all “yes, to some degree.” The brain is the only organ of our body that changes each day based on our experiences. And if we do any activities that challenge memory or attention for extended periods of time it will likely be beneficial for improving those capacities. If I play bridge, for example, many hours a week, I will likely get better at the game and boost my short term (working) memory as well. But, neuroscientists who study brain plasticity, the way the brain changes with stimulation (or lack of stimulation), have determined there are ways to enhance the beneficial effects of brain exercises to maximize the efficiency and positive outcomes so that children or adults can specifically target some capacities over others in a short period of time. And, controlled research is showing these targeted exercises have benefits on other brain capacities as well.

So, for example, researchers have shown that when seven year olds do a simple computer-based exercise that targets working memory for just a few minutes a day for a few consecutive weeks they show improved working memory (we would expect that) but also improved reading comprehension compared with children in their classrooms who received reading instruction but did not do the working memory activities (Loosli, 2012). Or, aging adults in their 70's who did computer-based processing speed exercises a few minutes a day for six consecutive weeks so they could do things like react faster when driving showed improvements in processing speed (again we would expect that) but also in memory when compared to adults who did other exercises but not the processing speed exercises, and the improvements lasted for ten years without doing additional exercises (Rebok, 2014).

The question, then, is what are the critical active ingredients neuroscientists have found that need to be "built-in" so brain exercises effectively build targeted skills compared to the benefits we get from just using our "noggin" in everyday activities? And, more important, how is a parent or consumer to get through all the hype and determine which brain exercises have the important design features shown to be effective?

Fortunately, neuroscientists who have thoroughly researched this have published excellent summaries in respected scientific journals.

Here are the key elements to look for in brain exercises:

  1. High & low - Exercises are most effective when they include challenging high-level tasks (like exercises that require a high degree of speed and accuracy) while also including low-level exercises that improve our ability to perceive similar sounds or images more distinctly (Ahissar et el, 2009). We might call this the Sherlock Holmes effect - you must see the details clearly to solve difficult problems.
  2. Adaptability - Exercises should increase or decrease in difficulty based on how you perform so they continuously adapt to your skill level (Roelfsema, 2010).
  3. Highly intensive training schedules - The relevant ‘skills' must be identified, isolated, then practiced through hundreds if not thousands of trials on an intensive (ie, quasi-daily) schedule (Roelfsema, 2010).
  4. Attention grabbing - In order to maximize enduring plastic changes in the cortex, the learner must attend to each trial or learning event on a trial-by-trial basis.
  5. Timely rewards - A very high proportion of the learning trials must be rewarded immediately (rather than at the end of a block of trials or on a trial-and-error basis) (Roelfsema, 2010).

So, parents may ask, ”This sounds fine for making our average brains work better but what about my child who has been diagnosed with a learning disability or other issues like autism spectrum disorder?” According to Ahissar et al. (2009), for our children (or adults) with learning issues, distortions or limitations at any level will create bottlenecks for learning and the changes we want from brain exercises. But, according to the authors, if the exercises have sufficient intensity and duration on specific sets of activities that focus on lower-level (perceptual) and middle-level stimuli (attention, memory and language) tasks, brain changes will enhance higher level skills and learning will be easier and more advanced.

So for parents, or anyone wanting to understand which brain exercises are worth the investment of valuable time and money, a rule of thumb would be to avoid products that advertise themselves as "brain games" - because that is what they probably are. Rather, seek out programs or products that contain "exercises" that focus on specific high and low level skills like language, reading, memory and attention, and those who have research evidence to support their value when used by children like yours.

References

Ahissar, M., Nahum, M., Nelken, I., & Hochstein, S. (2009). Reverse hierarchies and sensory learning, Philosophical Transactions of the Royal Society B, 364,285–299. doi: 10.1098/rstb.2008.0253

Loosli, S.V., Buschkuehl, M., Perrig, W.J., & Jaeggi, S.M. (2012). Working memory training improves reading processes in typically developing children, Child Neuropsychology, 18, 62-78. doi: 10.1080/09297049.2011.575772

Rebok, G.W., Ball, K., Guey, L.T., Jones, R.N., Kim, H.Y., King, J.W., . . . Willis, S.L. (2014). Ten-Year Effects of the Advanced Cognitive Training for Independent and Vital Elderly Cognitive Training Trial on Cognition and Everyday Functioning in Older Adults, Journal of the American Geriatrics Society, 62,16-24. doi: 10.1111/jgs.12607

Roelfsema, P.R., van Ooyen, A., & Watanabe, T. (2010). Perceptual learning rules based on reinforcers and attention, Trends in Cognitive Science, 14, 64–71. doi: 10.1016/j.tics.2009.11.005

Vinogradav, S., Fisher, M., & de Villers-Sidani, E. (2012). Cognitive Training for Impaired Neural Systems in Neuropsychiatric Illness, Neuropsychopharmacology Reviews,37, 43–76. doi: 10.1038/npp.2011.251

Related reading:

Brain Fitness Is Not A Game

Dopamine and Learning: What The Brain’s Reward Center Can Teach Educators

 

Self-Regulation Strategies for Students With Learning Disabilities

Tuesday, March 18, 2014 (All day)
  • Carrie Gajowski

Self-regulation strategies

When a student with a learning disability struggles academically, it’s logical to think that the issue is related to the student’s deficit in a specific ability. And while that may be true, there might be more to it. Students with learning disabilities often encounter academic difficulties, at least in part, because they don’t have effective strategies for working through challenges.

One effective tool that students can use to improve academic performance, regardless of ability, is self-regulation. Self-regulation is the process by which students take charge of their own learning, monitoring their behavior and progress and making adjustments along the way to get from idea to execution. It’s the transformation of thought into purposeful action. Here are several strategies teachers can introduce for use in the classroom and at home:

Setting Goals

Goal setting is an important part of self-regulation and can be foundational to other self-regulation strategies. When used effectively, the process of goal setting gives students an opportunity to observe their own behavior and pinpoint areas for improvement. It helps students identify what they need to do, lets them see how they are progressing, and motivates them to act productively.

Students should set goals for themselves that are specific and challenging, but not too hard. A goal should be quickly attainable so students can experience a sense of accomplishment and move on to tackle the next one. For example, when two students are struggling with homework, each might need to set a different goal to see improvement. The first student might identify time management as a problem and decide to cut out a leisure activity in order to achieve the goal of completing homework before dinnertime each day that week. The second student might realize that he needs to bring his class notes home from school every day so he has the information he needs to achieve his goal of completing all of his homework assignments for the week.

Self-Monitoring

Students self-monitor by asking themselves whether they have engaged in a specific, desired behavior. Building on the goal-setting examples above, our students might ask themselves, Am I using my time in the right way to complete my homework by dinnertime?Or, Did I put all of my homework assignments in my backpack to take home?Students may find it helpful to self-monitor for behaviors like paying attention, staying on task, following strategy steps, and meeting performance expectations such as completing all homework problems or spelling 8 of 10 spelling words correctly.

Self-Instruction

Self-instruction is also sometimes called “self-talk” and is part of normal development for many younger children. It can also be quite powerful when used by students of any age to purposefully self-regulate and direct learning behavior. For example, a student who is struggling to comprehend a challenging text might think, I need to look up the definitions of these unfamiliar words and read this page again.

Students can use self-talk to remind themselves to focus their attention, to take positive steps when faced with difficulties, to reinforce positive behaviors, and more. Teachers can model effective self-talk, but should allow each student to create and use her own statements. A little advance planning can be helpful here. Coming up with the right phrase in the heat of the moment – when focus has been lost or frustrations are running high – is unlikely to help. But taking a little time to write out some useful statements before starting a new project or beginning a homework assignment can enable students get themselves out of a tight spot.

Self-Reinforcement

Self-reinforcement occurs when a student chooses a motivating reward and then awards it to himself when he achieves a milestone. Self-reinforcement can be used over shorter and longer timeframes and can tie into goals. Our student who has identified time-management as an issue, for example, might decide, I can go to the movies on Sunday because I finished all of my homework before dinnertime every night this week.

Self-reinforcement can also work well in the classroom. Teachers and students can select rewards together and teachers can let students know how to earn them. Once a student has met the criteria for a reward, she can award it to herself – say, by selecting a sticker for her journal after completing the day’s writing assignment and getting her teacher’s approval.

Purposeful Learning

Becoming a better self-regulator isn’t a panacea for academic difficulties, but students with learning disabilities who learn effective self-regulation strategies will have some advantages. They will have tools in their toolbox that they can try out in a variety of situations before seeking outside help, or when help is not immediately available. They will understand how their behavior influences their results. And they will understand that their learning is a purposeful, active process in which they play the leading role.

Best of all, these self-regulation strategies can benefit all learners, not just those who are struggling. Why not give them a try?

References:

Reid, R., Lienemann, T.O., & Hagaman, J.L. (2013). Strategy Instruction for Students with Learning Disabilities,(2nd ed.) .New York: Guilford Press.

Self-Regulation. (n.d.). Retrieved from http://cehs.unl.edu/csi/self.shtml

Related reading:

Teaching Persistence: How to Build Student Stamina

5 Reasons Why Every Parent Should Be Familiar with Executive Function

Building Better Writers (Without Picking Up a Pen)

Tuesday, October 15, 2013 (All day)
  • Beth Rogowsky, Ed.D

better writer

When teachers think of teaching writing, they typically begin with the type of writing they want their students to compose—persuasive pieces, personal narratives, academic essays and the like. They think of following the steps of the writing process—prewriting, drafting, revising, editing, and publishing—and conduct mini-lessons during writers’ workshop. Others teachers begin diagraming sentences, discussing subject-verb agreement or distinguishing between nominative and objective case pronouns.

All too often, however, little attention is given to the cognitive skills of writing. And that’s a shame, because cognitive skills are the building blocks upon which writing depends.

The Cognitive Building Blocks of Writing

Cognitive skills such as memory, attention, sequencing, and processing speed underlie all composition. It is generally presumed that by middle and high school, students have mastered these basic cognitive skills, and, as such, mainstream writing curricula for secondary students rarely explicitly address the cognitive skills of writing. Nonetheless, research evidence is mounting that many middle and high school students who continue to struggle with writing have not mastered the underlying cognitive and linguistic skills on which written language depends (Berninger, Fuller, & Whitaker, 1996)

Memory

To write cohesive, readable, and understandable text, the writer must not only have a firm linguistic foundation in order to select the appropriate vocabulary and grammatical structure to convey the meaning intended, but must also hold the concepts, vocabulary, and grammatical form of sentences and paragraphs in working memory while formulating each new sentence.

The writing process itself places considerable demands on real-time verbal working memory, as writers construct and hold in mind the ideas they wish to express, inhibiting the irrelevant and attending to the relevant details of what they are presently writing. Simultaneously writers must keep in mind what they have already written, and plan for what they are about to write to complete their thoughts (Torrance & Galbraith, 2008).

Attention

Another cognitive skill that has been shown to affect writing is focused and sustained attention (Ransdell, Levy, & Kellogg, 2002). A writer’s full attention is consumed in thinking about what to say and applying correct spelling, punctuation, and syntactical rules to what is written. Sentence generation involves consciously reflecting on and manipulating knowledge that needs to be retrieved rapidly from long-term memory or actively maintained in short-term working memory.  Writers must toggle their attention between formulating their thoughts to be written and the transcriptional demands of actually recording these thoughts in written form, all the while inhibiting distractions from the environment.

Sequencing and Processing Speed

Writing also places heavy demands on both perceptual and motor sequencing. Writers must process their thoughts sequentially as they compose letters into words, words into sentences, and sentences into paragraphs that conform to the rules of any language. Applying language rules during writing—from recalling the correct sequence of letters within words, to recalling the proper order of words within sentences (such as, in English, nouns precede verbs and adjectives precede nouns), to building multiple paragraphs within a composition—also places particularly heavy demands on the writer’s sequencing abilities.

As the writer translates this mental process into a motor process of composing each word in a sentence, all preceding words in that sentence must be kept in working memory while words and sentences are strung into paragraphs. The writer needs to coordinate these cognitive tasks almost simultaneously, placing heavy demands on processing speed . The significance of processing speed is felt most heavily in the classroom, where students who cannot process rapidly enough are often times left behind.

What the Research Says

Because of the heavy cognitive demands that writing places on attention, sequencing, working memory, and processing speed, Robert T. Kellogg, a professor of psychology at Saint Louis University suggested (Kellogg, 2008) that explicit cognitive skills training programs—especially ones that emphasize deliberate practice—might prove particularly beneficial in improving student’s writing skills.

In two separate studies conducted by the author (Rogowsky, 2010; Rogowsky, Papamichalis, Villa, Heim, & Tallal, 2013) a significant improvement in students’ writing skills occurred after their participation in a computer-based cognitive and literacy skills training. In the first study, a pretest-posttest randomized field trial was conducted in a public middle school (Rogowsky, 2010). The study compared the writing skills of sixth-grade students who either did or did not receive individually adaptive, computer-based cognitive skills instruction ( Fast ForWord) in conjunction with their standards-aligned comprehensive literacy curriculum for one school marking period (45 days). The writing skills of students who received the cognitive training, in addition to the standards-aligned comprehensive literacy curriculum, improved significantly more than those who received the standards-aligned comprehensive literacy curriculum alone, with a large between-group difference.

In a second study, Fast ForWord training was shown to improve college students’ writing (Rogowsky et al., 2013). College students with poor writing skills participated in 11 weeks of computer-based cognitive and literacy skills training, and were compared to a group of college students from the general population of the same university. Results from this study showed the group who received training began with statistically lower writing skills before training, but exceeded the writing skills of the comparison group after training. Although writing was not explicitly trained, the individually adaptive, computer-based training designed to improve foundational cognitive and linguistic skills generalized to improve writing skills in both middle school and college students.

What it Means for Writing Instruction

Based upon these two studies, there is clearly a link between writing and the foundational cognitive skills upon which writing exists. Learning to write is one of the most cognitively demanding academic activities a student must perform. It is not surprising that so many students struggle to perfect and improve their writing abilities throughout their academic years. In addition to the traditional writing methodologies, the future of writing instruction calls for the inclusion of cognitive skills training.

References:

Berninger, V.W., Abbott, R.D., Swanson, H.L., Lovitt, D., Trivedi, P., Lin. S., Gould, L., Youngstrom, M., Shimada, S., & Amtmann, D. (2010). Relationship of word- and sentence-level working memory to reading and writing in second, forth, and sixth grade. Language, Speech, and Hearing Services in Schools, 41, 179-193. doi:10.1044/0161-1461(2009/08-0002)

Berninger, V.W., Fuller, F., & Whitaker, D. (1996). A process model of writing development across the life span. Educational Psychology Review, 8(3), 193-218. doi: 10.1007/BF01464073

Kellogg, R.T. (2008).Training writing skills: A cognitive developmental perspective. Journal of Writing Research, 1(1), 1-26. http://www.jowr.org/articles/vol1_1/JoWR_2008_vol1_nr1_Kellogg.pdf

Ransdell, S., Levy, C. M., & Kellogg, R.T. (2002). The structure of writing processes as revealed by secondary task demands. L1-Educational Studies in Language and Literature, 2(2), 141-163. doi: 10.1023/A:1020851300668

Rogowsky, B.A. (2010). The impact of Fast ForWord® on sixth grade students’ use of Standard Edited American English . (Doctoral dissertation). Retrieved from ProQuest Digital Dissertations. (AAT 3432348)

Rogowsky, B.A., Papamichalis, P., Villa, L., Heim, S., & Tallal, P. (2013). Neuroplasticity-based cognitive and linguistic skills training improves reading and writing skills in college students. Frontiers in Psychology, 4,137. doi: 10.3389/fpsyg.2013.00137

Torrance, M., & Galbraith, D. (2008). The processing demands of writing. In C.A. MacArthur S. Graham, & J. Fitzgerald (Eds.), Handbook of Writing Research (67-80). New York, NY: Guilford Press.

Related reading:

Reading to Write: Fast ForWord Writing Improvement Among College Students

What Makes a Good Reader? The Foundations of Reading Proficiency

 

Overcoming Language and Reading Problems: The Promise of Brain Plasticity

Wednesday, September 11, 2013 (All day)
  • Martha Burns, Ph.D

overcoming language and reading problems “There is an endless war of nerves going on inside each of our brains. If we stop exercising our mental skills, we do not just forget them: the brain map space for those skills is turned over to the skills we practice instead. If you ever ask yourself, ‘How often must I practice French, or guitar, or math to keep on top of it?’ you are asking a question about competitive plasticity. You are asking how frequently you must practice one activity to make sure its brain map space is not lost to another.”

-Norman Doidge in The Brain that Changes Itself

The Critical Period

From our very earliest days, our brain begins to map itself to the world as we experience it through our senses. The mapping is vague at first, lacking detail, but the more we interact with the world, the more well-defined our brain maps become until they are fully formed and differentiated.

“The critical period” is the name given to the time in infancy and early childhood during which our brain is so plastic that its structure is easily changed by simple exposure to new things in the environment. Babies, for example, learn the sounds of language and words effortlessly by listening to their parents speak. Inside the brain, what this learning looks like is the brain actually rewiring itself to change its own structure.

Use It or Lose It: Training the Brain to Form New Maps

Just a few decades ago, the prevailing scientific view held that the brain was a finely tuned machine that operated within a fixed scope of ability once the critical period had passed. But in the 1990s, through a series of experiments with monkeys, Dr. Michael Merzenich discovered that our brains can change well past the critical period—and indeed throughout our lives. But learning that takes place after the critical period is no longer effortless, and children and adults must work hard to pay attention to the new information that they wish to absorb and master.

The maxim commonly used to describe the phenomenon of neural learning is “neurons that fire together wire together,” and it’s this “wiring together” that results in the corresponding structural changes in the brain. Timing is key to the process, with neurons that fire simultaneously wiring together to create a map.

The space allocated to a neural map evolves over a number of stages. When learning is taking place, a relatively large space is allocated to the map. Once a skill is established, the mapped neurons become so efficient that fewer are needed—allowing some of the map space to be reallocated again for new learning. It’s a practical use-it-or-lose-it process that allows us to continue picking up new skills without bumping into space limits in the brain. Taking up a musical instrument such as violin, for example, causes more map space to be allocated to the playing fingers, and consequently, less space is allocated where there is lower demand.

As we develop mastery of a skill, our neurons not only grow to be more efficient, but they also begin to process faster. With that faster processing they tend to fire together more readily as well, creating more groups of neurons that send out clearer signals. The clarity of those signals has a great deal to do with how well the brain learns and remembers what the neurons have processed. The clearer the signal, the more clearly the brain remembers.

But what if there are gaps or inefficiencies in the maps that have been established?

From the Lab to the Learner

Dr. Merzenich had become interested in the work of Dr. Paula Tallal at Rutgers University. Dr. Tallal was interested in understanding why some children have more trouble than others when it comes to learning to read. Her research had shown that auditory processing problems were causing the “fast parts” of speech—common combinations of consonants and vowels that are pronounced very quickly—to be problematic for children with language difficulties.

Dr. Merzenich believed the problem was a matter of the children’s auditory processing speed lagging behind the speed of the speech sounds, resulting in an inability to distinguish differences between similar sounds or to perceive the correct sequence of sounds when they occurred in rapid succession.

Another known contributing factor was that of neural readiness. After processing a sound, neurons require a rest period before they can fire again. Normally this rest period is about 30 milliseconds, but for most children with language impairments it takes at least three times as long for the neuron to recover. The result is that a lot of critical language information is simply missed during the rest period.

Merzenich and Tallal believed they could combine forces to effectively help children who struggled to read. In 1996, Merzenich and his colleague Dr. Bill Jenkins teamed up with Tallal and her colleague Dr. Steve Miller to develop a real-world application of the science of neural plasticity by creating a product that could help struggling readers rewire their brains. From this union, Scientific Learning was born.

Fast ForWord

The partnership between Merzenich, Jenkins, Tallal, and Miller resulted in the software product that today we call Fast ForWord. Fast ForWord was carefully designed in the guise of a video game that could challenge and develop cognitive skills like memory, attention, processing speed, and sequencing as well as language and reading skills from phonemic awareness to decoding and comprehension.

Merzenich and Jenkins wanted Fast ForWord to trigger the children’s brains to secrete dopamine and acetylcholine—neurotransmitters that help lock in learning. Because the brain secretes these neurotransmitters when it gets rewarded, a generous supply of entertaining animations was built into the product to play spontaneously when a child achieved a goal.

From the very beginning, Fast ForWord elicited remarkable results. Children who participated in the initial field trial boosted their language development by 1.8 years, on average, in just six weeks. A subsequent study at Stanford University, dyslexic children’s brains showed increased activity in several areas after Fast ForWord, bringing them more in line with the patterns seen in typical readers’ brains. The dyslexic children’s brains had shown different patterns of activity before Fast ForWord (as revealed by fMRI).

In the 14 years since the field trial, Fast ForWord has been used by more than 2.7 million children around the world, with achievement gains of up to two years in as little as three months. During this time, school-based results—such as those at St. Mary Parish Public School System in Louisiana—have demonstrated that Fast ForWord can improve test scores across subject areas. And many additional research studies have corroborated the effectiveness of the Fast ForWord program for building cognitive, language, and reading skills.

In a 2010 study at Wilkes University in Pennsylvania, Beth Rogowsky found that Fast ForWord significantly improved students’ grammar skills as measured by the Written Expression Scale from the Oral and Written Language Scales (OWLS). A subsequent study by Dr. Rogowsky published in 2013 showed that college students who used Fast ForWord increased their reading and writing skills significantly more than students in a comparison group as measured by the Gates MacGinitie Reading Test and the OWLS.

The Brain That Changes Itself

Our current understanding of how the brain changes itself in response to experience opens the door to mind-bending possibilities. With the development of newer, smaller, and faster technologies, there’s no telling how Merzenich’s revolutionary discovery of brain plasticity past the critical period will impact the future of education.

What is certain is that true brain-based learning has arrived, that it’s available today, and that children around the world are overcoming language and reading problems that not long ago were often considered insurmountable.

References:

Doidge, N. (2007). The Brain That Changes Itself: Stories of Personal Triumph from the Frontiers of Brain Science. London: Penguin Books.

Related reading:

What Educators May Not Know about the Neuroscience of Learning

What New Brain Wave Research Tells Us About Language-Based Learning Disabilities

 

Exclusive Webinars with Experts on the Brain and Reading

Tuesday, August 13, 2013 (All day)
  • Carrie Gajowski

2013 education webinars

I’m so excited to announce our webinars for this fall!  We are honored to have Dr. Norman Doidge, the well-known author of The Brain That Changes Itself, join us October 2 ndfor a webinar. This is a rare opportunity that educators, clinicians and parents alike won’t want to miss. Dr. Tim Rasinski, one of our favorite presenters, is returning to speak about the role of fluency in comprehension, and Dr. Marty Burns will be speaking on meeting the needs of the rapidly changing diverse student populations.  

8/19 - Using Brain Science to Close the Achievement Gap

Dr. Martha S. Burnswill discuss what the latest brain science says about the true learning potential of ELLs, struggling readers, and students with ADHD. Find out how today’s powerful intervention technologies can help build foundational reading and cognitive skills for a variety of student populations—and help students improve their ability to learn.

9/11 - Reading Fluency: The Neglected (but Necessary) Goal of Your Reading Program

Dr. Timothy Rasinskiis a vocal proponent of teaching reading fluency as a means of helping students build better comprehension. In our September webinar, Dr. Rasinski will talk about fluency as a predictor of reading comprehension, present the research on fluency, and substantiate fluency as an essential component of any successful reading program (National Reading Panel). All this andyou’ll gain a better understanding of how to teach fluency so your students can start getting more from their reading.

10/2 - The Neuroplasticity Revolution: New Ways to Improve Learning

For 400 years, the brain was thought to be a more-or-less fixed piece of machinery after infancy. Dr. Norman Doidge, author of The Brain That Changes Itself, will talk about the recent discovery that the brain retains the ability to change its own structure and function in response to experience through the latest years of our lives. Learn how this discovery was made, how it turns our understanding of learning on its head, and how it radically alters the was we think about student potential—especially for students with learning challenges or disorders. And, discover the online interventions that have grown out of the science and learn how they work to help students overcome reading and language difficulties.

Related reading:

Why Dr. Timothy Rasinski Thinks Reading Fluency Should Be “Hot!”

Brain Plasticity: A New Frontier For Education and Learning

 

Pages

Subscribe to RSS - attention